Viewing file: functions.py (3.55 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
# Functions that should behave the same as Numeric and need changing
import numpy as np import numpy.core.multiarray as mu import numpy.core.numeric as nn from typeconv import convtypecode, convtypecode2
__all__ = ['take', 'repeat', 'sum', 'product', 'sometrue', 'alltrue', 'cumsum', 'cumproduct', 'compress', 'fromfunction', 'ones', 'empty', 'identity', 'zeros', 'array', 'asarray', 'nonzero', 'reshape', 'arange', 'fromstring', 'ravel', 'trace', 'indices', 'where','sarray','cross_product', 'argmax', 'argmin', 'average']
def take(a, indicies, axis=0): return np.take(a, indicies, axis)
def repeat(a, repeats, axis=0): return np.repeat(a, repeats, axis)
def sum(x, axis=0): return np.sum(x, axis)
def product(x, axis=0): return np.product(x, axis)
def sometrue(x, axis=0): return np.sometrue(x, axis)
def alltrue(x, axis=0): return np.alltrue(x, axis)
def cumsum(x, axis=0): return np.cumsum(x, axis)
def cumproduct(x, axis=0): return np.cumproduct(x, axis)
def argmax(x, axis=-1): return np.argmax(x, axis)
def argmin(x, axis=-1): return np.argmin(x, axis)
def compress(condition, m, axis=-1): return np.compress(condition, m, axis)
def fromfunction(args, dimensions): return np.fromfunction(args, dimensions, dtype=int)
def ones(shape, typecode='l', savespace=0, dtype=None): """ones(shape, dtype=int) returns an array of the given dimensions which is initialized to all ones. """ dtype = convtypecode(typecode,dtype) a = mu.empty(shape, dtype) a.fill(1) return a
def zeros(shape, typecode='l', savespace=0, dtype=None): """zeros(shape, dtype=int) returns an array of the given dimensions which is initialized to all zeros """ dtype = convtypecode(typecode,dtype) return mu.zeros(shape, dtype)
def identity(n,typecode='l', dtype=None): """identity(n) returns the identity 2-d array of shape n x n. """ dtype = convtypecode(typecode, dtype) return nn.identity(n, dtype)
def empty(shape, typecode='l', dtype=None): dtype = convtypecode(typecode, dtype) return mu.empty(shape, dtype)
def array(sequence, typecode=None, copy=1, savespace=0, dtype=None): dtype = convtypecode2(typecode, dtype) return mu.array(sequence, dtype, copy=copy)
def sarray(a, typecode=None, copy=False, dtype=None): dtype = convtypecode2(typecode, dtype) return mu.array(a, dtype, copy)
def asarray(a, typecode=None, dtype=None): dtype = convtypecode2(typecode, dtype) return mu.array(a, dtype, copy=0)
def nonzero(a): res = np.nonzero(a) if len(res) == 1: return res[0] else: raise ValueError, "Input argument must be 1d"
def reshape(a, shape): return np.reshape(a, shape)
def arange(start, stop=None, step=1, typecode=None, dtype=None): dtype = convtypecode2(typecode, dtype) return mu.arange(start, stop, step, dtype)
def fromstring(string, typecode='l', count=-1, dtype=None): dtype = convtypecode(typecode, dtype) return mu.fromstring(string, dtype, count=count)
def ravel(m): return np.ravel(m)
def trace(a, offset=0, axis1=0, axis2=1): return np.trace(a, offset=0, axis1=0, axis2=1)
def indices(dimensions, typecode=None, dtype=None): dtype = convtypecode(typecode, dtype) return np.indices(dimensions, dtype)
def where(condition, x, y): return np.where(condition, x, y)
def cross_product(a, b, axis1=-1, axis2=-1): return np.cross(a, b, axis1, axis2)
def average(a, axis=0, weights=None, returned=False): return np.average(a, axis, weights, returned)
|