Viewing file: recfunctions.py (31.29 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
""" Collection of utilities to manipulate structured arrays.
Most of these functions were initially implemented by John Hunter for matplotlib. They have been rewritten and extended for convenience.
"""
import itertools from itertools import chain as iterchain, repeat as iterrepeat, izip as iterizip import numpy as np from numpy import ndarray, recarray import numpy.ma as ma from numpy.ma import MaskedArray from numpy.ma.mrecords import MaskedRecords
from numpy.lib._iotools import _is_string_like
_check_fill_value = np.ma.core._check_fill_value
__all__ = ['append_fields', 'drop_fields', 'find_duplicates', 'get_fieldstructure', 'join_by', 'merge_arrays', 'rec_append_fields', 'rec_drop_fields', 'rec_join', 'recursive_fill_fields', 'rename_fields', 'stack_arrays', ]
def recursive_fill_fields(input, output): """ Fills fields from output with fields from input, with support for nested structures.
Parameters ---------- input : ndarray Input array. output : ndarray Output array.
Notes ----- * `output` should be at least the same size as `input`
Examples -------- >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)]) >>> b = np.zeros((3,), dtype=a.dtype) >>> recursive_fill_fields(a, b) np.array([(1, 10.), (2, 20.), (0, 0.)], dtype=[('A', int), ('B', float)])
""" newdtype = output.dtype for field in newdtype.names: try: current = input[field] except ValueError: continue if current.dtype.names: recursive_fill_fields(current, output[field]) else: output[field][:len(current)] = current return output
def get_names(adtype): """ Returns the field names of the input datatype as a tuple.
Parameters ---------- adtype : dtype Input datatype
Examples -------- >>> get_names(np.empty((1,), dtype=int)) is None True >>> get_names(np.empty((1,), dtype=[('A',int), ('B', float)])) ('A', 'B') >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) >>> get_names(adtype) ('a', ('b', ('ba', 'bb'))) """ listnames = [] names = adtype.names for name in names: current = adtype[name] if current.names: listnames.append((name, tuple(get_names(current)))) else: listnames.append(name) return tuple(listnames) or None
def get_names_flat(adtype): """ Returns the field names of the input datatype as a tuple. Nested structure are flattend beforehand.
Parameters ---------- adtype : dtype Input datatype
Examples -------- >>> get_names_flat(np.empty((1,), dtype=int)) is None True >>> get_names_flat(np.empty((1,), dtype=[('A',int), ('B', float)])) ('A', 'B') >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) >>> get_names_flat(adtype) ('a', 'b', 'ba', 'bb') """ listnames = [] names = adtype.names for name in names: listnames.append(name) current = adtype[name] if current.names: listnames.extend(get_names_flat(current)) return tuple(listnames) or None
def flatten_descr(ndtype): """ Flatten a structured data-type description.
Examples -------- >>> ndtype = np.dtype([('a', '<i4'), ('b', [('ba', '<f8'), ('bb', '<i4')])]) >>> flatten_descr(ndtype) (('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32')))
""" names = ndtype.names if names is None: return ndtype.descr else: descr = [] for field in names: (typ, _) = ndtype.fields[field] if typ.names: descr.extend(flatten_descr(typ)) else: descr.append((field, typ)) return tuple(descr)
def zip_descr(seqarrays, flatten=False): """ Combine the dtype description of a series of arrays.
Parameters ---------- seqarrays : sequence of arrays Sequence of arrays flatten : {boolean}, optional Whether to collapse nested descriptions. """ newdtype = [] if flatten: for a in seqarrays: newdtype.extend(flatten_descr(a.dtype)) else: for a in seqarrays: current = a.dtype names = current.names or () if len(names) > 1: newdtype.append(('', current.descr)) else: newdtype.extend(current.descr) return np.dtype(newdtype).descr
def get_fieldstructure(adtype, lastname=None, parents=None,): """ Returns a dictionary with fields as keys and a list of parent fields as values.
This function is used to simplify access to fields nested in other fields.
Parameters ---------- adtype : np.dtype Input datatype lastname : optional Last processed field name (used internally during recursion). parents : dictionary Dictionary of parent fields (used interbally during recursion).
Examples -------- >>> ndtype = np.dtype([('A', int), ... ('B', [('BA', int), ... ('BB', [('BBA', int), ('BBB', int)])])]) >>> get_fieldstructure(ndtype) {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']} """ if parents is None: parents = {} names = adtype.names for name in names: current = adtype[name] if current.names: if lastname: parents[name] = [lastname,] else: parents[name] = [] parents.update(get_fieldstructure(current, name, parents)) else: lastparent = [_ for _ in (parents.get(lastname, []) or [])] if lastparent: # if (lastparent[-1] != lastname): lastparent.append(lastname) elif lastname: lastparent = [lastname,] parents[name] = lastparent or [] return parents or None
def _izip_fields_flat(iterable): """ Returns an iterator of concatenated fields from a sequence of arrays, collapsing any nested structure. """ for element in iterable: if isinstance(element, np.void): for f in _izip_fields_flat(tuple(element)): yield f else: yield element
def _izip_fields(iterable): """ Returns an iterator of concatenated fields from a sequence of arrays. """ for element in iterable: if hasattr(element, '__iter__') and not isinstance(element, basestring): for f in _izip_fields(element): yield f elif isinstance(element, np.void) and len(tuple(element)) == 1: for f in _izip_fields(element): yield f else: yield element
def izip_records(seqarrays, fill_value=None, flatten=True): """ Returns an iterator of concatenated items from a sequence of arrays.
Parameters ---------- seqarray : sequence of arrays Sequence of arrays. fill_value : {None, integer} Value used to pad shorter iterables. flatten : {True, False}, Whether to """ # OK, that's a complete ripoff from Python2.6 itertools.izip_longest def sentinel(counter = ([fill_value]*(len(seqarrays)-1)).pop): "Yields the fill_value or raises IndexError" yield counter() # fillers = iterrepeat(fill_value) iters = [iterchain(it, sentinel(), fillers) for it in seqarrays] # Should we flatten the items, or just use a nested approach if flatten: zipfunc = _izip_fields_flat else: zipfunc = _izip_fields # try: for tup in iterizip(*iters): yield tuple(zipfunc(tup)) except IndexError: pass
def _fix_output(output, usemask=True, asrecarray=False): """ Private function: return a recarray, a ndarray, a MaskedArray or a MaskedRecords depending on the input parameters """ if not isinstance(output, MaskedArray): usemask = False if usemask: if asrecarray: output = output.view(MaskedRecords) else: output = ma.filled(output) if asrecarray: output = output.view(recarray) return output
def _fix_defaults(output, defaults=None): """ Update the fill_value and masked data of `output` from the default given in a dictionary defaults. """ names = output.dtype.names (data, mask, fill_value) = (output.data, output.mask, output.fill_value) for (k, v) in (defaults or {}).iteritems(): if k in names: fill_value[k] = v data[k][mask[k]] = v return output
def merge_arrays(seqarrays, fill_value=-1, flatten=False, usemask=True, asrecarray=False): """ Merge arrays field by field.
Parameters ---------- seqarrays : sequence of ndarrays Sequence of arrays fill_value : {float}, optional Filling value used to pad missing data on the shorter arrays. flatten : {False, True}, optional Whether to collapse nested fields. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : {False, True}, optional Whether to return a recarray (MaskedRecords) or not.
Examples -------- >>> merge_arrays((np.array([1, 2]), np.array([10., 20., 30.]))) masked_array(data = [(1, 10.0) (2, 20.0) (--, 30.0)], mask = [(False, False) (False, False) (True, False)], fill_value=(999999, 1e+20) dtype=[('f0', '<i4'), ('f1', '<f8')]) >>> merge_arrays((np.array([1, 2]), np.array([10., 20., 30.])), ... usemask=False) array(data = [(1, 10.0) (2, 20.0) (-1, 30.0)], dtype=[('f0', '<i4'), ('f1', '<f8')]) >>> merge_arrays((np.array([1, 2]).view([('a', int)]), np.array([10., 20., 30.])), usemask=False, asrecarray=True) rec.array(data = [(1, 10.0) (2, 20.0) (-1, 30.0)], dtype=[('a', int), ('f1', '<f8')]) """ if (len(seqarrays) == 1): seqarrays = seqarrays[0] if isinstance(seqarrays, ndarray): seqdtype = seqarrays.dtype if (not flatten) or \ (zip_descr((seqarrays,), flatten=True) == seqdtype.descr): seqarrays = seqarrays.ravel() if not seqdtype.names: seqarrays = seqarrays.view([('', seqdtype)]) if usemask: if asrecarray: return seqarrays.view(MaskedRecords) return seqarrays.view(MaskedArray) elif asrecarray: return seqarrays.view(recarray) return seqarrays else: seqarrays = (seqarrays,) # Get the dtype newdtype = zip_descr(seqarrays, flatten=flatten) # Get the data and the fill_value from each array seqdata = [ma.getdata(a.ravel()) for a in seqarrays] seqmask = [ma.getmaskarray(a).ravel() for a in seqarrays] fill_value = [_check_fill_value(fill_value, a.dtype) for a in seqdata] # Make an iterator from each array, padding w/ fill_values maxlength = max(len(a) for a in seqarrays) for (i, (a, m, fval)) in enumerate(zip(seqdata, seqmask, fill_value)): # Flatten the fill_values if there's only one field if isinstance(fval, (ndarray, np.void)): fmsk = ma.ones((1,), m.dtype)[0] if len(fval.dtype) == 1: fval = fval.item()[0] fmsk = True else: # fval and fmsk should be np.void objects fval = np.array([fval,], dtype=a.dtype)[0] # fmsk = np.array([fmsk,], dtype=m.dtype)[0] else: fmsk = True nbmissing = (maxlength-len(a)) seqdata[i] = iterchain(a, [fval]*nbmissing) seqmask[i] = iterchain(m, [fmsk]*nbmissing) # data = izip_records(seqdata, flatten=flatten) data = tuple(data) if usemask: mask = izip_records(seqmask, fill_value=True, flatten=flatten) mask = tuple(mask) output = ma.array(np.fromiter(data, dtype=newdtype)) output._mask[:] = list(mask) if asrecarray: output = output.view(MaskedRecords) else: output = np.fromiter(data, dtype=newdtype) if asrecarray: output = output.view(recarray) return output
def drop_fields(base, drop_names, usemask=True, asrecarray=False): """ Return a new array with fields in `drop_names` dropped.
Nested fields are supported.
Parameters ---------- base : array Input array drop_names : string or sequence String or sequence of strings corresponding to the names of the fields to drop. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : string or sequence Whether to return a recarray or a mrecarray (`asrecarray=True`) or a plain ndarray or masked array with flexible dtype (`asrecarray=False`)
Examples -------- >>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) >>> drop_fields(a, 'a') array([((2.0, 3),), ((5.0, 6),)], dtype=[('b', [('ba', '<f8'), ('bb', '<i4')])]) >>> drop_fields(a, 'ba') array([(1, (3,)), (4, (6,))], dtype=[('a', '<i4'), ('b', [('bb', '<i4')])]) >>> drop_fields(a, ['ba', 'bb']) array([(1,), (4,)], dtype=[('a', '<i4')]) """ if _is_string_like(drop_names): drop_names = [drop_names,] else: drop_names = set(drop_names) # def _drop_descr(ndtype, drop_names): names = ndtype.names newdtype = [] for name in names: current = ndtype[name] if name in drop_names: continue if current.names: descr = _drop_descr(current, drop_names) if descr: newdtype.append((name, descr)) else: newdtype.append((name, current)) return newdtype # newdtype = _drop_descr(base.dtype, drop_names) if not newdtype: return None # output = np.empty(base.shape, dtype=newdtype) output = recursive_fill_fields(base, output) return _fix_output(output, usemask=usemask, asrecarray=asrecarray)
def rec_drop_fields(base, drop_names): """ Returns a new numpy.recarray with fields in `drop_names` dropped. """ return drop_fields(base, drop_names, usemask=False, asrecarray=True)
def rename_fields(base, namemapper): """ Rename the fields from a flexible-datatype ndarray or recarray.
Nested fields are supported.
Parameters ---------- base : ndarray Input array whose fields must be modified. namemapper : dictionary Dictionary mapping old field names to their new version.
Examples -------- >>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))], dtype=[('a', int), ('b', [('ba', float), ('bb', (float, 2))])]) >>> rename_fields(a, {'a':'A', 'bb':'BB'}) array([(1, (2.0, 3)), (4, (5.0, 6))], dtype=[('A', '<i4'), ('b', [('ba', '<f8'), ('BB', '<i4')])])
""" def _recursive_rename_fields(ndtype, namemapper): newdtype = [] for name in ndtype.names: newname = namemapper.get(name, name) current = ndtype[name] if current.names: newdtype.append((newname, _recursive_rename_fields(current, namemapper))) else: newdtype.append((newname, current)) return newdtype newdtype = _recursive_rename_fields(base.dtype, namemapper) return base.view(newdtype)
def append_fields(base, names, data=None, dtypes=None, fill_value=-1, usemask=True, asrecarray=False): """ Add new fields to an existing array.
The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values.
Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. fill_value : {float}, optional Filling value used to pad missing data on the shorter arrays. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : {False, True}, optional Whether to return a recarray (MaskedRecords) or not.
""" # Check the names if isinstance(names, (tuple, list)): if len(names) != len(data): err_msg = "The number of arrays does not match the number of names" raise ValueError(err_msg) elif isinstance(names, basestring): names = [names,] data = [data,] # if dtypes is None: data = [np.array(a, copy=False, subok=True) for a in data] data = [a.view([(name, a.dtype)]) for (name, a) in zip(names, data)] elif not hasattr(dtypes, '__iter__'): dtypes = [dtypes,] if len(data) != len(dtypes): if len(dtypes) == 1: dtypes = dtypes * len(data) else: msg = "The dtypes argument must be None, "\ "a single dtype or a list." raise ValueError(msg) data = [np.array(a, copy=False, subok=True, dtype=d).view([(n, d)]) for (a, n, d) in zip(data, names, dtypes)] # base = merge_arrays(base, usemask=usemask, fill_value=fill_value) if len(data) > 1: data = merge_arrays(data, flatten=True, usemask=usemask, fill_value=fill_value) else: data = data.pop() # output = ma.masked_all(max(len(base), len(data)), dtype=base.dtype.descr + data.dtype.descr) output = recursive_fill_fields(base, output) output = recursive_fill_fields(data, output) # return _fix_output(output, usemask=usemask, asrecarray=asrecarray)
def rec_append_fields(base, names, data, dtypes=None): """ Add new fields to an existing array.
The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values. Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes, optional Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. See Also -------- append_fields
Returns ------- appended_array : np.recarray """ return append_fields(base, names, data=data, dtypes=dtypes, asrecarray=True, usemask=False)
def stack_arrays(arrays, defaults=None, usemask=True, asrecarray=False, autoconvert=False): """ Superposes arrays fields by fields
Parameters ---------- seqarrays : array or sequence Sequence of input arrays. defaults : dictionary, optional Dictionary mapping field names to the corresponding default values. usemask : {True, False}, optional Whether to return a MaskedArray (or MaskedRecords is `asrecarray==True`) or a ndarray. asrecarray : {False, True}, optional Whether to return a recarray (or MaskedRecords if `usemask==True`) or just a flexible-type ndarray. autoconvert : {False, True}, optional Whether automatically cast the type of the field to the maximum.
Examples -------- >>> x = np.array([1, 2,]) >>> stack_arrays(x) is x True >>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)]) >>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], dtype=[('A', '|S3'), ('B', float), ('C', float)]) >>> test = stack_arrays((z,zz)) >>> masked_array(data = [('A', 1.0, --) ('B', 2.0, --) ('a', 10.0, 100.0) ... ('b', 20.0, 200.0) ('c', 30.0, 300.0)], ... mask = [(False, False, True) (False, False, True) (False, False, False) ... (False, False, False) (False, False, False)], ... fill_value=('N/A', 1e+20, 1e+20) ... dtype=[('A', '|S3'), ('B', '<f8'), ('C', '<f8')])
""" if isinstance(arrays, ndarray): return arrays elif len(arrays) == 1: return arrays[0] seqarrays = [np.asanyarray(a).ravel() for a in arrays] nrecords = [len(a) for a in seqarrays] ndtype = [a.dtype for a in seqarrays] fldnames = [d.names for d in ndtype] # dtype_l = ndtype[0] newdescr = dtype_l.descr names = [_[0] for _ in newdescr] for dtype_n in ndtype[1:]: for descr in dtype_n.descr: name = descr[0] or '' if name not in names: newdescr.append(descr) names.append(name) else: nameidx = names.index(name) current_descr = newdescr[nameidx] if autoconvert: if np.dtype(descr[1]) > np.dtype(current_descr[-1]): current_descr = list(current_descr) current_descr[-1] = descr[1] newdescr[nameidx] = tuple(current_descr) elif descr[1] != current_descr[-1]: raise TypeError("Incompatible type '%s' <> '%s'" %\ (dict(newdescr)[name], descr[1])) # Only one field: use concatenate if len(newdescr) == 1: output = ma.concatenate(seqarrays) else: # output = ma.masked_all((np.sum(nrecords),), newdescr) offset = np.cumsum(np.r_[0, nrecords]) seen = [] for (a, n, i, j) in zip(seqarrays, fldnames, offset[:-1], offset[1:]): names = a.dtype.names if names is None: output['f%i' % len(seen)][i:j] = a else: for name in n: output[name][i:j] = a[name] if name not in seen: seen.append(name) # return _fix_output(_fix_defaults(output, defaults), usemask=usemask, asrecarray=asrecarray)
def find_duplicates(a, key=None, ignoremask=True, return_index=False): """ Find the duplicates in a structured array along a given key
Parameters ---------- a : array-like Input array key : {string, None}, optional Name of the fields along which to check the duplicates. If None, the search is performed by records ignoremask : {True, False}, optional Whether masked data should be discarded or considered as duplicates. return_index : {False, True}, optional Whether to return the indices of the duplicated values.
Examples -------- >>> ndtype = [('a', int)] >>> a = ma.array([1, 1, 1, 2, 2, 3, 3], ... mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype) >>> find_duplicates(a, ignoremask=True, return_index=True) """ a = np.asanyarray(a).ravel() # Get a dictionary of fields fields = get_fieldstructure(a.dtype) # Get the sorting data (by selecting the corresponding field) base = a if key: for f in fields[key]: base = base[f] base = base[key] # Get the sorting indices and the sorted data sortidx = base.argsort() sortedbase = base[sortidx] sorteddata = sortedbase.filled() # Compare the sorting data flag = (sorteddata[:-1] == sorteddata[1:]) # If masked data must be ignored, set the flag to false where needed if ignoremask: sortedmask = sortedbase.recordmask flag[sortedmask[1:]] = False flag = np.concatenate(([False], flag)) # We need to take the point on the left as well (else we're missing it) flag[:-1] = flag[:-1] + flag[1:] duplicates = a[sortidx][flag] if return_index: return (duplicates, sortidx[flag]) else: return duplicates
def join_by(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None, usemask=True, asrecarray=False): """ Join arrays `r1` and `r2` on key `key`.
The key should be either a string or a sequence of string corresponding to the fields used to join the array. An exception is raised if the `key` field cannot be found in the two input arrays. Neither `r1` nor `r2` should have any duplicates along `key`: the presence of duplicates will make the output quite unreliable. Note that duplicates are not looked for by the algorithm.
Parameters ---------- key : {string, sequence} A string or a sequence of strings corresponding to the fields used for comparison. r1, r2 : arrays Structured arrays. jointype : {'inner', 'outer', 'leftouter'}, optional If 'inner', returns the elements common to both r1 and r2. If 'outer', returns the common elements as well as the elements of r1 not in r2 and the elements of not in r2. If 'leftouter', returns the common elements and the elements of r1 not in r2. r1postfix : string, optional String appended to the names of the fields of r1 that are present in r2 but absent of the key. r2postfix : string, optional String appended to the names of the fields of r2 that are present in r1 but absent of the key. defaults : {dictionary}, optional Dictionary mapping field names to the corresponding default values. usemask : {True, False}, optional Whether to return a MaskedArray (or MaskedRecords is `asrecarray==True`) or a ndarray. asrecarray : {False, True}, optional Whether to return a recarray (or MaskedRecords if `usemask==True`) or just a flexible-type ndarray.
Notes ----- * The output is sorted along the key. * A temporary array is formed by dropping the fields not in the key for the two arrays and concatenating the result. This array is then sorted, and the common entries selected. The output is constructed by filling the fields with the selected entries. Matching is not preserved if there are some duplicates...
""" # Check jointype if jointype not in ('inner', 'outer', 'leftouter'): raise ValueError("The 'jointype' argument should be in 'inner', "\ "'outer' or 'leftouter' (got '%s' instead)" % jointype) # If we have a single key, put it in a tuple if isinstance(key, basestring): key = (key, )
# Check the keys for name in key: if name not in r1.dtype.names: raise ValueError('r1 does not have key field %s'%name) if name not in r2.dtype.names: raise ValueError('r2 does not have key field %s'%name)
# Make sure we work with ravelled arrays r1 = r1.ravel() r2 = r2.ravel() (nb1, nb2) = (len(r1), len(r2)) (r1names, r2names) = (r1.dtype.names, r2.dtype.names)
# Make temporary arrays of just the keys r1k = drop_fields(r1, [n for n in r1names if n not in key]) r2k = drop_fields(r2, [n for n in r2names if n not in key])
# Concatenate the two arrays for comparison aux = ma.concatenate((r1k, r2k)) idx_sort = aux.argsort(order=key) aux = aux[idx_sort] # # Get the common keys flag_in = ma.concatenate(([False], aux[1:] == aux[:-1])) flag_in[:-1] = flag_in[1:] + flag_in[:-1] idx_in = idx_sort[flag_in] idx_1 = idx_in[(idx_in < nb1)] idx_2 = idx_in[(idx_in >= nb1)] - nb1 (r1cmn, r2cmn) = (len(idx_1), len(idx_2)) if jointype == 'inner': (r1spc, r2spc) = (0, 0) elif jointype == 'outer': idx_out = idx_sort[~flag_in] idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) idx_2 = np.concatenate((idx_2, idx_out[(idx_out >= nb1)] - nb1)) (r1spc, r2spc) = (len(idx_1) - r1cmn, len(idx_2) - r2cmn) elif jointype == 'leftouter': idx_out = idx_sort[~flag_in] idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) (r1spc, r2spc) = (len(idx_1) - r1cmn, 0) # Select the entries from each input (s1, s2) = (r1[idx_1], r2[idx_2]) # # Build the new description of the output array ....... # Start with the key fields ndtype = [list(_) for _ in r1k.dtype.descr] # Add the other fields ndtype.extend(list(_) for _ in r1.dtype.descr if _[0] not in key) # Find the new list of names (it may be different from r1names) names = list(_[0] for _ in ndtype) for desc in r2.dtype.descr: desc = list(desc) name = desc[0] # Have we seen the current name already ? if name in names: nameidx = names.index(name) current = ndtype[nameidx] # The current field is part of the key: take the largest dtype if name in key: current[-1] = max(desc[1], current[-1]) # The current field is not part of the key: add the suffixes else: current[0] += r1postfix desc[0] += r2postfix ndtype.insert(nameidx+1, desc) #... we haven't: just add the description to the current list else: names.extend(desc[0]) ndtype.append(desc) # Revert the elements to tuples ndtype = [tuple(_) for _ in ndtype] # Find the largest nb of common fields : r1cmn and r2cmn should be equal, but... cmn = max(r1cmn, r2cmn) # Construct an empty array output = ma.masked_all((cmn + r1spc + r2spc,), dtype=ndtype) names = output.dtype.names for f in r1names: selected = s1[f] if f not in names: f += r1postfix current = output[f] current[:r1cmn] = selected[:r1cmn] if jointype in ('outer', 'leftouter'): current[cmn:cmn+r1spc] = selected[r1cmn:] for f in r2names: selected = s2[f] if f not in names: f += r2postfix current = output[f] current[:r2cmn] = selected[:r2cmn] if (jointype == 'outer') and r2spc: current[-r2spc:] = selected[r2cmn:] # Sort and finalize the output output.sort(order=key) kwargs = dict(usemask=usemask, asrecarray=asrecarray) return _fix_output(_fix_defaults(output, defaults), **kwargs)
def rec_join(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None): """ Join arrays `r1` and `r2` on keys. Alternative to join_by, that always returns a np.recarray.
See Also -------- join_by : equivalent function """ kwargs = dict(jointype=jointype, r1postfix=r1postfix, r2postfix=r2postfix, defaults=defaults, usemask=False, asrecarray=True) return join_by(key, r1, r2, **kwargs)
|