Viewing file: test_io.py (43.9 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
import numpy as np import numpy.ma as ma from numpy.ma.testutils import * from numpy.testing import assert_warns
import StringIO import gzip import os import threading
from tempfile import mkstemp, NamedTemporaryFile import sys, time from datetime import datetime
from numpy.lib._iotools import ConverterError, ConverterLockError, \ ConversionWarning
MAJVER, MINVER = sys.version_info[:2]
def strptime(s, fmt=None): """This function is available in the datetime module only from Python >= 2.5.
""" return datetime(*time.strptime(s, fmt)[:3])
class RoundtripTest(object): def roundtrip(self, save_func, *args, **kwargs): """ save_func : callable Function used to save arrays to file. file_on_disk : bool If true, store the file on disk, instead of in a string buffer. save_kwds : dict Parameters passed to `save_func`. load_kwds : dict Parameters passed to `numpy.load`. args : tuple of arrays Arrays stored to file.
""" save_kwds = kwargs.get('save_kwds', {}) load_kwds = kwargs.get('load_kwds', {}) file_on_disk = kwargs.get('file_on_disk', False)
if file_on_disk: # Do not delete the file on windows, because we can't # reopen an already opened file on that platform, so we # need to close the file and reopen it, implying no # automatic deletion. if sys.platform == 'win32' and MAJVER >= 2 and MINVER >= 6: target_file = NamedTemporaryFile(delete=False) else: target_file = NamedTemporaryFile() load_file = target_file.name else: target_file = StringIO.StringIO() load_file = target_file
arr = args
save_func(target_file, *arr, **save_kwds) target_file.flush() target_file.seek(0)
if sys.platform == 'win32' and not isinstance(target_file, StringIO.StringIO): target_file.close()
arr_reloaded = np.load(load_file, **load_kwds)
self.arr = arr self.arr_reloaded = arr_reloaded
def test_array(self): a = np.array([[1, 2], [3, 4]], float) self.roundtrip(a)
a = np.array([[1, 2], [3, 4]], int) self.roundtrip(a)
a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.csingle) self.roundtrip(a)
a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.cdouble) self.roundtrip(a)
def test_1D(self): a = np.array([1, 2, 3, 4], int) self.roundtrip(a)
@np.testing.dec.knownfailureif(sys.platform == 'win32', "Fail on Win32") def test_mmap(self): a = np.array([[1, 2.5], [4, 7.3]]) self.roundtrip(a, file_on_disk=True, load_kwds={'mmap_mode': 'r'})
def test_record(self): a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) self.roundtrip(a)
class TestSaveLoad(RoundtripTest, TestCase): def roundtrip(self, *args, **kwargs): RoundtripTest.roundtrip(self, np.save, *args, **kwargs) assert_equal(self.arr[0], self.arr_reloaded)
class TestSavezLoad(RoundtripTest, TestCase): def roundtrip(self, *args, **kwargs): RoundtripTest.roundtrip(self, np.savez, *args, **kwargs) for n, arr in enumerate(self.arr): assert_equal(arr, self.arr_reloaded['arr_%d' % n])
def test_multiple_arrays(self): a = np.array([[1, 2], [3, 4]], float) b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex) self.roundtrip(a, b)
def test_named_arrays(self): a = np.array([[1, 2], [3, 4]], float) b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex) c = StringIO.StringIO() np.savez(c, file_a=a, file_b=b) c.seek(0) l = np.load(c) assert_equal(a, l['file_a']) assert_equal(b, l['file_b'])
def test_savez_filename_clashes(self): # Test that issue #852 is fixed # and savez functions in multithreaded environment
def writer(error_list): fd, tmp = mkstemp(suffix='.npz') os.close(fd) try: arr = np.random.randn(500, 500) try: np.savez(tmp, arr=arr) except OSError, err: error_list.append(err) finally: os.remove(tmp)
errors = [] threads = [threading.Thread(target=writer, args=(errors,)) for j in xrange(3)] for t in threads: t.start() for t in threads: t.join()
if errors: raise AssertionError(errors)
class TestSaveTxt(TestCase): def test_array(self): a = np.array([[1, 2], [3, 4]], float) fmt = "%.18e" c = StringIO.StringIO() np.savetxt(c, a, fmt=fmt) c.seek(0) assert_equal(c.readlines(), [(fmt + ' ' + fmt + '\n') % (1, 2), (fmt + ' ' + fmt + '\n') % (3, 4)])
a = np.array([[1, 2], [3, 4]], int) c = StringIO.StringIO() np.savetxt(c, a, fmt='%d') c.seek(0) assert_equal(c.readlines(), ['1 2\n', '3 4\n'])
def test_1D(self): a = np.array([1, 2, 3, 4], int) c = StringIO.StringIO() np.savetxt(c, a, fmt='%d') c.seek(0) lines = c.readlines() assert_equal(lines, ['1\n', '2\n', '3\n', '4\n'])
def test_record(self): a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) c = StringIO.StringIO() np.savetxt(c, a, fmt='%d') c.seek(0) assert_equal(c.readlines(), ['1 2\n', '3 4\n'])
def test_delimiter(self): a = np.array([[1., 2.], [3., 4.]]) c = StringIO.StringIO() np.savetxt(c, a, delimiter=',', fmt='%d') c.seek(0) assert_equal(c.readlines(), ['1,2\n', '3,4\n'])
def test_format(self): a = np.array([(1, 2), (3, 4)]) c = StringIO.StringIO() # Sequence of formats np.savetxt(c, a, fmt=['%02d', '%3.1f']) c.seek(0) assert_equal(c.readlines(), ['01 2.0\n', '03 4.0\n'])
# A single multiformat string c = StringIO.StringIO() np.savetxt(c, a, fmt='%02d : %3.1f') c.seek(0) lines = c.readlines() assert_equal(lines, ['01 : 2.0\n', '03 : 4.0\n'])
# Specify delimiter, should be overiden c = StringIO.StringIO() np.savetxt(c, a, fmt='%02d : %3.1f', delimiter=',') c.seek(0) lines = c.readlines() assert_equal(lines, ['01 : 2.0\n', '03 : 4.0\n'])
class TestLoadTxt(TestCase): def test_record(self): c = StringIO.StringIO() c.write('1 2\n3 4') c.seek(0) x = np.loadtxt(c, dtype=[('x', np.int32), ('y', np.int32)]) a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) assert_array_equal(x, a)
d = StringIO.StringIO() d.write('M 64.0 75.0\nF 25.0 60.0') d.seek(0) mydescriptor = {'names': ('gender', 'age', 'weight'), 'formats': ('S1', 'i4', 'f4')} b = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)], dtype=mydescriptor) y = np.loadtxt(d, dtype=mydescriptor) assert_array_equal(y, b)
def test_array(self): c = StringIO.StringIO() c.write('1 2\n3 4')
c.seek(0) x = np.loadtxt(c, dtype=int) a = np.array([[1, 2], [3, 4]], int) assert_array_equal(x, a)
c.seek(0) x = np.loadtxt(c, dtype=float) a = np.array([[1, 2], [3, 4]], float) assert_array_equal(x, a)
def test_1D(self): c = StringIO.StringIO() c.write('1\n2\n3\n4\n') c.seek(0) x = np.loadtxt(c, dtype=int) a = np.array([1, 2, 3, 4], int) assert_array_equal(x, a)
c = StringIO.StringIO() c.write('1,2,3,4\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',') a = np.array([1, 2, 3, 4], int) assert_array_equal(x, a)
def test_missing(self): c = StringIO.StringIO() c.write('1,2,3,,5\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', \ converters={3:lambda s: int(s or - 999)}) a = np.array([1, 2, 3, -999, 5], int) assert_array_equal(x, a)
def test_converters_with_usecols(self): c = StringIO.StringIO() c.write('1,2,3,,5\n6,7,8,9,10\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', \ converters={3:lambda s: int(s or - 999)}, \ usecols=(1, 3,)) a = np.array([[2, -999], [7, 9]], int) assert_array_equal(x, a)
def test_comments(self): c = StringIO.StringIO() c.write('# comment\n1,2,3,5\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', \ comments='#') a = np.array([1, 2, 3, 5], int) assert_array_equal(x, a)
def test_skiprows(self): c = StringIO.StringIO() c.write('comment\n1,2,3,5\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', \ skiprows=1) a = np.array([1, 2, 3, 5], int) assert_array_equal(x, a)
c = StringIO.StringIO() c.write('# comment\n1,2,3,5\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', \ skiprows=1) a = np.array([1, 2, 3, 5], int) assert_array_equal(x, a)
def test_usecols(self): a = np.array([[1, 2], [3, 4]], float) c = StringIO.StringIO() np.savetxt(c, a) c.seek(0) x = np.loadtxt(c, dtype=float, usecols=(1,)) assert_array_equal(x, a[:, 1])
a = np.array([[1, 2, 3], [3, 4, 5]], float) c = StringIO.StringIO() np.savetxt(c, a) c.seek(0) x = np.loadtxt(c, dtype=float, usecols=(1, 2)) assert_array_equal(x, a[:, 1:])
# Testing with arrays instead of tuples. c.seek(0) x = np.loadtxt(c, dtype=float, usecols=np.array([1, 2])) assert_array_equal(x, a[:, 1:])
# Checking with dtypes defined converters. data = '''JOE 70.1 25.3 BOB 60.5 27.9 ''' c = StringIO.StringIO(data) names = ['stid', 'temp'] dtypes = ['S4', 'f8'] arr = np.loadtxt(c, usecols=(0, 2), dtype=zip(names, dtypes)) assert_equal(arr['stid'], ["JOE", "BOB"]) assert_equal(arr['temp'], [25.3, 27.9])
def test_fancy_dtype(self): c = StringIO.StringIO() c.write('1,2,3.0\n4,5,6.0\n') c.seek(0) dt = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) x = np.loadtxt(c, dtype=dt, delimiter=',') a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dt) assert_array_equal(x, a)
def test_shaped_dtype(self): c = StringIO.StringIO("aaaa 1.0 8.0 1 2 3 4 5 6") dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), ('block', int, (2, 3))]) x = np.loadtxt(c, dtype=dt) a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])], dtype=dt) assert_array_equal(x, a)
def test_empty_file(self): c = StringIO.StringIO() assert_raises(IOError, np.loadtxt, c)
def test_unused_converter(self): c = StringIO.StringIO() c.writelines(['1 21\n', '3 42\n']) c.seek(0) data = np.loadtxt(c, usecols=(1,), converters={0: lambda s: int(s, 16)}) assert_array_equal(data, [21, 42])
c.seek(0) data = np.loadtxt(c, usecols=(1,), converters={1: lambda s: int(s, 16)}) assert_array_equal(data, [33, 66])
def test_dtype_with_object(self): "Test using an explicit dtype with an object" from datetime import date import time data = """ 1; 2001-01-01 2; 2002-01-31 """ ndtype = [('idx', int), ('code', np.object)] func = lambda s: strptime(s.strip(), "%Y-%m-%d") converters = {1: func} test = np.loadtxt(StringIO.StringIO(data), delimiter=";", dtype=ndtype, converters=converters) control = np.array([(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], dtype=ndtype) assert_equal(test, control)
class Testfromregex(TestCase): def test_record(self): c = StringIO.StringIO() c.write('1.312 foo\n1.534 bar\n4.444 qux') c.seek(0)
dt = [('num', np.float64), ('val', 'S3')] x = np.fromregex(c, r"([0-9.]+)\s+(...)", dt) a = np.array([(1.312, 'foo'), (1.534, 'bar'), (4.444, 'qux')], dtype=dt) assert_array_equal(x, a)
def test_record_2(self): c = StringIO.StringIO() c.write('1312 foo\n1534 bar\n4444 qux') c.seek(0)
dt = [('num', np.int32), ('val', 'S3')] x = np.fromregex(c, r"(\d+)\s+(...)", dt) a = np.array([(1312, 'foo'), (1534, 'bar'), (4444, 'qux')], dtype=dt) assert_array_equal(x, a)
def test_record_3(self): c = StringIO.StringIO() c.write('1312 foo\n1534 bar\n4444 qux') c.seek(0)
dt = [('num', np.float64)] x = np.fromregex(c, r"(\d+)\s+...", dt) a = np.array([(1312,), (1534,), (4444,)], dtype=dt) assert_array_equal(x, a)
#####--------------------------------------------------------------------------
class TestFromTxt(TestCase): # def test_record(self): "Test w/ explicit dtype" data = StringIO.StringIO('1 2\n3 4') # data.seek(0) test = np.ndfromtxt(data, dtype=[('x', np.int32), ('y', np.int32)]) control = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) assert_equal(test, control) # data = StringIO.StringIO('M 64.0 75.0\nF 25.0 60.0') # data.seek(0) descriptor = {'names': ('gender', 'age', 'weight'), 'formats': ('S1', 'i4', 'f4')} control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)], dtype=descriptor) test = np.ndfromtxt(data, dtype=descriptor) assert_equal(test, control)
def test_array(self): "Test outputing a standard ndarray" data = StringIO.StringIO('1 2\n3 4') control = np.array([[1, 2], [3, 4]], dtype=int) test = np.ndfromtxt(data, dtype=int) assert_array_equal(test, control) # data.seek(0) control = np.array([[1, 2], [3, 4]], dtype=float) test = np.loadtxt(data, dtype=float) assert_array_equal(test, control)
def test_1D(self): "Test squeezing to 1D" control = np.array([1, 2, 3, 4], int) # data = StringIO.StringIO('1\n2\n3\n4\n') test = np.ndfromtxt(data, dtype=int) assert_array_equal(test, control) # data = StringIO.StringIO('1,2,3,4\n') test = np.ndfromtxt(data, dtype=int, delimiter=',') assert_array_equal(test, control)
def test_comments(self): "Test the stripping of comments" control = np.array([1, 2, 3, 5], int) # Comment on its own line data = StringIO.StringIO('# comment\n1,2,3,5\n') test = np.ndfromtxt(data, dtype=int, delimiter=',', comments='#') assert_equal(test, control) # Comment at the end of a line data = StringIO.StringIO('1,2,3,5# comment\n') test = np.ndfromtxt(data, dtype=int, delimiter=',', comments='#') assert_equal(test, control)
def test_skiprows(self): "Test row skipping" control = np.array([1, 2, 3, 5], int) kwargs = dict(dtype=int, delimiter=',') # data = StringIO.StringIO('comment\n1,2,3,5\n') test = np.ndfromtxt(data, skip_header=1, **kwargs) assert_equal(test, control) # data = StringIO.StringIO('# comment\n1,2,3,5\n') test = np.loadtxt(data, skiprows=1, **kwargs) assert_equal(test, control)
def test_skip_footer(self): data = ["# %i" % i for i in range(1, 6)] data.append("A, B, C") data.extend(["%i,%3.1f,%03s" % (i, i, i) for i in range(51)]) data[-1] = "99,99" kwargs = dict(delimiter=",", names=True, skip_header=5, skip_footer=10) test = np.genfromtxt(StringIO.StringIO("\n".join(data)), **kwargs) ctrl = np.array([("%f" % i, "%f" % i, "%f" % i) for i in range(40)], dtype=[(_, float) for _ in "ABC"]) assert_equal(test, ctrl)
def test_header(self): "Test retrieving a header" data = StringIO.StringIO('gender age weight\nM 64.0 75.0\nF 25.0 60.0') test = np.ndfromtxt(data, dtype=None, names=True) control = {'gender': np.array(['M', 'F']), 'age': np.array([64.0, 25.0]), 'weight': np.array([75.0, 60.0])} assert_equal(test['gender'], control['gender']) assert_equal(test['age'], control['age']) assert_equal(test['weight'], control['weight'])
def test_auto_dtype(self): "Test the automatic definition of the output dtype" data = StringIO.StringIO('A 64 75.0 3+4j True\nBCD 25 60.0 5+6j False') test = np.ndfromtxt(data, dtype=None) control = [np.array(['A', 'BCD']), np.array([64, 25]), np.array([75.0, 60.0]), np.array([3 + 4j, 5 + 6j]), np.array([True, False]), ] assert_equal(test.dtype.names, ['f0', 'f1', 'f2', 'f3', 'f4']) for (i, ctrl) in enumerate(control): assert_equal(test['f%i' % i], ctrl)
def test_auto_dtype_uniform(self): "Tests whether the output dtype can be uniformized" data = StringIO.StringIO('1 2 3 4\n5 6 7 8\n') test = np.ndfromtxt(data, dtype=None) control = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) assert_equal(test, control)
def test_fancy_dtype(self): "Check that a nested dtype isn't MIA" data = StringIO.StringIO('1,2,3.0\n4,5,6.0\n') fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) test = np.ndfromtxt(data, dtype=fancydtype, delimiter=',') control = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype) assert_equal(test, control)
def test_names_overwrite(self): "Test overwriting the names of the dtype" descriptor = {'names': ('g', 'a', 'w'), 'formats': ('S1', 'i4', 'f4')} data = StringIO.StringIO('M 64.0 75.0\nF 25.0 60.0') names = ('gender', 'age', 'weight') test = np.ndfromtxt(data, dtype=descriptor, names=names) descriptor['names'] = names control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)], dtype=descriptor) assert_equal(test, control)
def test_commented_header(self): "Check that names can be retrieved even if the line is commented out." data = StringIO.StringIO(""" #gender age weight M 21 72.100000 F 35 58.330000 M 33 21.99 """) # The # is part of the first name and should be deleted automatically. test = np.genfromtxt(data, names=True, dtype=None) ctrl = np.array([('M', 21, 72.1), ('F', 35, 58.33), ('M', 33, 21.99)], dtype=[('gender', '|S1'), ('age', int), ('weight', float)]) assert_equal(test, ctrl) # Ditto, but we should get rid of the first element data = StringIO.StringIO(""" # gender age weight M 21 72.100000 F 35 58.330000 M 33 21.99 """) test = np.genfromtxt(data, names=True, dtype=None) assert_equal(test, ctrl)
def test_autonames_and_usecols(self): "Tests names and usecols" data = StringIO.StringIO('A B C D\n aaaa 121 45 9.1') test = np.ndfromtxt(data, usecols=('A', 'C', 'D'), names=True, dtype=None) control = np.array(('aaaa', 45, 9.1), dtype=[('A', '|S4'), ('C', int), ('D', float)]) assert_equal(test, control)
def test_converters_with_usecols(self): "Test the combination user-defined converters and usecol" data = StringIO.StringIO('1,2,3,,5\n6,7,8,9,10\n') test = np.ndfromtxt(data, dtype=int, delimiter=',', converters={3:lambda s: int(s or - 999)}, usecols=(1, 3,)) control = np.array([[2, -999], [7, 9]], int) assert_equal(test, control)
def test_converters_with_usecols_and_names(self): "Tests names and usecols" data = StringIO.StringIO('A B C D\n aaaa 121 45 9.1') test = np.ndfromtxt(data, usecols=('A', 'C', 'D'), names=True, dtype=None, converters={'C':lambda s: 2 * int(s)}) control = np.array(('aaaa', 90, 9.1), dtype=[('A', '|S4'), ('C', int), ('D', float)]) assert_equal(test, control)
def test_converters_cornercases(self): "Test the conversion to datetime." converter = {'date': lambda s: strptime(s, '%Y-%m-%d %H:%M:%SZ')} data = StringIO.StringIO('2009-02-03 12:00:00Z, 72214.0') test = np.ndfromtxt(data, delimiter=',', dtype=None, names=['date', 'stid'], converters=converter) control = np.array((datetime(2009, 02, 03), 72214.), dtype=[('date', np.object_), ('stid', float)]) assert_equal(test, control)
def test_unused_converter(self): "Test whether unused converters are forgotten" data = StringIO.StringIO("1 21\n 3 42\n") test = np.ndfromtxt(data, usecols=(1,), converters={0: lambda s: int(s, 16)}) assert_equal(test, [21, 42]) # data.seek(0) test = np.ndfromtxt(data, usecols=(1,), converters={1: lambda s: int(s, 16)}) assert_equal(test, [33, 66])
def test_invalid_converter(self): strip_rand = lambda x : float(('r' in x.lower() and x.split()[-1]) or (not 'r' in x.lower() and x.strip() or 0.0)) strip_per = lambda x : float(('%' in x.lower() and x.split()[0]) or (not '%' in x.lower() and x.strip() or 0.0)) s = StringIO.StringIO("D01N01,10/1/2003 ,1 %,R 75,400,600\r\n" \ "L24U05,12/5/2003, 2 %,1,300, 150.5\r\n" "D02N03,10/10/2004,R 1,,7,145.55") kwargs = dict(converters={2 : strip_per, 3 : strip_rand}, delimiter=",", dtype=None) assert_raises(ConverterError, np.genfromtxt, s, **kwargs)
def test_dtype_with_converters(self): dstr = "2009; 23; 46" test = np.ndfromtxt(StringIO.StringIO(dstr,), delimiter=";", dtype=float, converters={0:str}) control = np.array([('2009', 23., 46)], dtype=[('f0', '|S4'), ('f1', float), ('f2', float)]) assert_equal(test, control) test = np.ndfromtxt(StringIO.StringIO(dstr,), delimiter=";", dtype=float, converters={0:float}) control = np.array([2009., 23., 46],) assert_equal(test, control)
def test_dtype_with_object(self): "Test using an explicit dtype with an object" from datetime import date import time data = """ 1; 2001-01-01 2; 2002-01-31 """ ndtype = [('idx', int), ('code', np.object)] func = lambda s: strptime(s.strip(), "%Y-%m-%d") converters = {1: func} test = np.genfromtxt(StringIO.StringIO(data), delimiter=";", dtype=ndtype, converters=converters) control = np.array([(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], dtype=ndtype) assert_equal(test, control) # ndtype = [('nest', [('idx', int), ('code', np.object)])] try: test = np.genfromtxt(StringIO.StringIO(data), delimiter=";", dtype=ndtype, converters=converters) except NotImplementedError: pass else: errmsg = "Nested dtype involving objects should be supported." raise AssertionError(errmsg)
def test_userconverters_with_explicit_dtype(self): "Test user_converters w/ explicit (standard) dtype" data = StringIO.StringIO('skip,skip,2001-01-01,1.0,skip') test = np.genfromtxt(data, delimiter=",", names=None, dtype=float, usecols=(2, 3), converters={2: str}) control = np.array([('2001-01-01', 1.)], dtype=[('', '|S10'), ('', float)]) assert_equal(test, control)
def test_spacedelimiter(self): "Test space delimiter" data = StringIO.StringIO("1 2 3 4 5\n6 7 8 9 10") test = np.ndfromtxt(data) control = np.array([[ 1., 2., 3., 4., 5.], [ 6., 7., 8., 9., 10.]]) assert_equal(test, control)
def test_missing(self): data = StringIO.StringIO('1,2,3,,5\n') test = np.ndfromtxt(data, dtype=int, delimiter=',', \ converters={3:lambda s: int(s or - 999)}) control = np.array([1, 2, 3, -999, 5], int) assert_equal(test, control)
def test_missing_with_tabs(self): "Test w/ a delimiter tab" txt = "1\t2\t3\n\t2\t\n1\t\t3" test = np.genfromtxt(StringIO.StringIO(txt), delimiter="\t", usemask=True,) ctrl_d = np.array([(1, 2, 3), (np.nan, 2, np.nan), (1, np.nan, 3)],) ctrl_m = np.array([(0, 0, 0), (1, 0, 1), (0, 1, 0)], dtype=bool) assert_equal(test.data, ctrl_d) assert_equal(test.mask, ctrl_m)
def test_usecols(self): "Test the selection of columns" # Select 1 column control = np.array([[1, 2], [3, 4]], float) data = StringIO.StringIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1,)) assert_equal(test, control[:, 1]) # control = np.array([[1, 2, 3], [3, 4, 5]], float) data = StringIO.StringIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1, 2)) assert_equal(test, control[:, 1:]) # Testing with arrays instead of tuples. data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=np.array([1, 2])) assert_equal(test, control[:, 1:])
def test_usecols_as_css(self): "Test giving usecols with a comma-separated string" data = "1 2 3\n4 5 6" test = np.genfromtxt(StringIO.StringIO(data), names="a, b, c", usecols="a, c") ctrl = np.array([(1, 3), (4, 6)], dtype=[(_, float) for _ in "ac"]) assert_equal(test, ctrl)
def test_usecols_with_structured_dtype(self): "Test usecols with an explicit structured dtype" data = StringIO.StringIO("""JOE 70.1 25.3\nBOB 60.5 27.9""") names = ['stid', 'temp'] dtypes = ['S4', 'f8'] test = np.ndfromtxt(data, usecols=(0, 2), dtype=zip(names, dtypes)) assert_equal(test['stid'], ["JOE", "BOB"]) assert_equal(test['temp'], [25.3, 27.9])
def test_usecols_with_integer(self): "Test usecols with an integer" test = np.genfromtxt(StringIO.StringIO("1 2 3\n4 5 6"), usecols=0) assert_equal(test, np.array([1., 4.]))
def test_usecols_with_named_columns(self): "Test usecols with named columns" ctrl = np.array([(1, 3), (4, 6)], dtype=[('a', float), ('c', float)]) data = "1 2 3\n4 5 6" kwargs = dict(names="a, b, c") test = np.genfromtxt(StringIO.StringIO(data), usecols=(0, -1), **kwargs) assert_equal(test, ctrl) test = np.genfromtxt(StringIO.StringIO(data), usecols=('a', 'c'), **kwargs) assert_equal(test, ctrl)
def test_empty_file(self): "Test that an empty file raises the proper exception" data = StringIO.StringIO() assert_raises(IOError, np.ndfromtxt, data)
def test_fancy_dtype_alt(self): "Check that a nested dtype isn't MIA" data = StringIO.StringIO('1,2,3.0\n4,5,6.0\n') fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) test = np.mafromtxt(data, dtype=fancydtype, delimiter=',') control = ma.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype) assert_equal(test, control)
def test_shaped_dtype(self): c = StringIO.StringIO("aaaa 1.0 8.0 1 2 3 4 5 6") dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), ('block', int, (2, 3))]) x = np.ndfromtxt(c, dtype=dt) a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])], dtype=dt) assert_array_equal(x, a)
def test_withmissing(self): data = StringIO.StringIO('A,B\n0,1\n2,N/A') kwargs = dict(delimiter=",", missing_values="N/A", names=True) test = np.mafromtxt(data, dtype=None, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], dtype=[('A', np.int), ('B', np.int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) # data.seek(0) test = np.mafromtxt(data, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], dtype=[('A', np.float), ('B', np.float)]) assert_equal(test, control) assert_equal(test.mask, control.mask)
def test_user_missing_values(self): data = "A, B, C\n0, 0., 0j\n1, N/A, 1j\n-9, 2.2, N/A\n3, -99, 3j" basekwargs = dict(dtype=None, delimiter=",", names=True,) mdtype = [('A', int), ('B', float), ('C', complex)] # test = np.mafromtxt(StringIO.StringIO(data), missing_values="N/A", **basekwargs) control = ma.array([(0, 0.0, 0j), (1, -999, 1j), (-9, 2.2, -999j), (3, -99, 3j)], mask=[(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)], dtype=mdtype) assert_equal(test, control) # basekwargs['dtype'] = mdtype test = np.mafromtxt(StringIO.StringIO(data), missing_values={0:-9, 1:-99, 2:-999j}, **basekwargs) control = ma.array([(0, 0.0, 0j), (1, -999, 1j), (-9, 2.2, -999j), (3, -99, 3j)], mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)], dtype=mdtype) assert_equal(test, control) # test = np.mafromtxt(StringIO.StringIO(data), missing_values={0:-9, 'B':-99, 'C':-999j}, **basekwargs) control = ma.array([(0, 0.0, 0j), (1, -999, 1j), (-9, 2.2, -999j), (3, -99, 3j)], mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)], dtype=mdtype) assert_equal(test, control)
def test_user_filling_values(self): "Test with missing and filling values" ctrl = np.array([(0, 3), (4, -999)], dtype=[('a', int), ('b', int)]) data = "N/A, 2, 3\n4, ,???" kwargs = dict(delimiter=",", dtype=int, names="a,b,c", missing_values={0:"N/A", 'b':" ", 2:"???"}, filling_values={0:0, 'b':0, 2:-999}) test = np.genfromtxt(StringIO.StringIO(data), **kwargs) ctrl = np.array([(0, 2, 3), (4, 0, -999)], dtype=[(_, int) for _ in "abc"]) assert_equal(test, ctrl) # test = np.genfromtxt(StringIO.StringIO(data), usecols=(0, -1), **kwargs) ctrl = np.array([(0, 3), (4, -999)], dtype=[(_, int) for _ in "ac"]) assert_equal(test, ctrl)
def test_withmissing_float(self): data = StringIO.StringIO('A,B\n0,1.5\n2,-999.00') test = np.mafromtxt(data, dtype=None, delimiter=',', missing_values='-999.0', names=True,) control = ma.array([(0, 1.5), (2, -1.)], mask=[(False, False), (False, True)], dtype=[('A', np.int), ('B', np.float)]) assert_equal(test, control) assert_equal(test.mask, control.mask)
def test_with_masked_column_uniform(self): "Test masked column" data = StringIO.StringIO('1 2 3\n4 5 6\n') test = np.genfromtxt(data, dtype=None, missing_values='2,5', usemask=True) control = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[0, 1, 0], [0, 1, 0]]) assert_equal(test, control)
def test_with_masked_column_various(self): "Test masked column" data = StringIO.StringIO('True 2 3\nFalse 5 6\n') test = np.genfromtxt(data, dtype=None, missing_values='2,5', usemask=True) control = ma.array([(1, 2, 3), (0, 5, 6)], mask=[(0, 1, 0), (0, 1, 0)], dtype=[('f0', bool), ('f1', bool), ('f2', int)]) assert_equal(test, control)
def test_invalid_raise(self): "Test invalid raise" data = ["1, 1, 1, 1, 1"] * 50 for i in range(5): data[10 * i] = "2, 2, 2, 2 2" data.insert(0, "a, b, c, d, e") mdata = StringIO.StringIO("\n".join(data)) # kwargs = dict(delimiter=",", dtype=None, names=True) # XXX: is there a better way to get the return value of the callable in # assert_warns ? ret = {} def f(_ret={}): _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs) assert_warns(ConversionWarning, f, _ret=ret) mtest = ret['mtest'] assert_equal(len(mtest), 45) assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde'])) # mdata.seek(0) assert_raises(ValueError, np.ndfromtxt, mdata, delimiter=",", names=True)
def test_invalid_raise_with_usecols(self): "Test invalid_raise with usecols" data = ["1, 1, 1, 1, 1"] * 50 for i in range(5): data[10 * i] = "2, 2, 2, 2 2" data.insert(0, "a, b, c, d, e") mdata = StringIO.StringIO("\n".join(data)) kwargs = dict(delimiter=",", dtype=None, names=True, invalid_raise=False) # XXX: is there a better way to get the return value of the callable in # assert_warns ? ret = {} def f(_ret={}): _ret['mtest'] = np.ndfromtxt(mdata, usecols=(0, 4), **kwargs) assert_warns(ConversionWarning, f, _ret=ret) mtest = ret['mtest'] assert_equal(len(mtest), 45) assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'ae'])) # mdata.seek(0) mtest = np.ndfromtxt(mdata, usecols=(0, 1), **kwargs) assert_equal(len(mtest), 50) control = np.ones(50, dtype=[(_, int) for _ in 'ab']) control[[10 * _ for _ in range(5)]] = (2, 2) assert_equal(mtest, control)
def test_inconsistent_dtype(self): "Test inconsistent dtype" data = ["1, 1, 1, 1, -1.1"] * 50 mdata = StringIO.StringIO("\n".join(data))
converters = {4: lambda x:"(%s)" % x} kwargs = dict(delimiter=",", converters=converters, dtype=[(_, int) for _ in 'abcde'],) assert_raises(TypeError, np.genfromtxt, mdata, **kwargs)
def test_default_field_format(self): "Test default format" data = "0, 1, 2.3\n4, 5, 6.7" mtest = np.ndfromtxt(StringIO.StringIO(data), delimiter=",", dtype=None, defaultfmt="f%02i") ctrl = np.array([(0, 1, 2.3), (4, 5, 6.7)], dtype=[("f00", int), ("f01", int), ("f02", float)]) assert_equal(mtest, ctrl)
def test_single_dtype_wo_names(self): "Test single dtype w/o names" data = "0, 1, 2.3\n4, 5, 6.7" mtest = np.ndfromtxt(StringIO.StringIO(data), delimiter=",", dtype=float, defaultfmt="f%02i") ctrl = np.array([[0., 1., 2.3], [4., 5., 6.7]], dtype=float) assert_equal(mtest, ctrl)
def test_single_dtype_w_explicit_names(self): "Test single dtype w explicit names" data = "0, 1, 2.3\n4, 5, 6.7" mtest = np.ndfromtxt(StringIO.StringIO(data), delimiter=",", dtype=float, names="a, b, c") ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)], dtype=[(_, float) for _ in "abc"]) assert_equal(mtest, ctrl)
def test_single_dtype_w_implicit_names(self): "Test single dtype w implicit names" data = "a, b, c\n0, 1, 2.3\n4, 5, 6.7" mtest = np.ndfromtxt(StringIO.StringIO(data), delimiter=",", dtype=float, names=True) ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)], dtype=[(_, float) for _ in "abc"]) assert_equal(mtest, ctrl)
def test_easy_structured_dtype(self): "Test easy structured dtype" data = "0, 1, 2.3\n4, 5, 6.7" mtest = np.ndfromtxt(StringIO.StringIO(data), delimiter=",", dtype=(int, float, float), defaultfmt="f_%02i") ctrl = np.array([(0, 1., 2.3), (4, 5., 6.7)], dtype=[("f_00", int), ("f_01", float), ("f_02", float)]) assert_equal(mtest, ctrl)
def test_autostrip(self): "Test autostrip" data = "01/01/2003 , 1.3, abcde" kwargs = dict(delimiter=",", dtype=None) mtest = np.ndfromtxt(StringIO.StringIO(data), **kwargs) ctrl = np.array([('01/01/2003 ', 1.3, ' abcde')], dtype=[('f0', '|S12'), ('f1', float), ('f2', '|S8')]) assert_equal(mtest, ctrl) mtest = np.ndfromtxt(StringIO.StringIO(data), autostrip=True, **kwargs) ctrl = np.array([('01/01/2003', 1.3, 'abcde')], dtype=[('f0', '|S10'), ('f1', float), ('f2', '|S5')]) assert_equal(mtest, ctrl)
def test_incomplete_names(self): "Test w/ incomplete names" data = "A,,C\n0,1,2\n3,4,5" kwargs = dict(delimiter=",", names=True) # w/ dtype=None ctrl = np.array([(0, 1, 2), (3, 4, 5)], dtype=[(_, int) for _ in ('A', 'f0', 'C')]) test = np.ndfromtxt(StringIO.StringIO(data), dtype=None, **kwargs) assert_equal(test, ctrl) # w/ default dtype ctrl = np.array([(0, 1, 2), (3, 4, 5)], dtype=[(_, float) for _ in ('A', 'f0', 'C')]) test = np.ndfromtxt(StringIO.StringIO(data), **kwargs)
def test_names_auto_completion(self): "Make sure that names are properly completed" data = "1 2 3\n 4 5 6" test = np.genfromtxt(StringIO.StringIO(data), dtype=(int, float, int), names="a") ctrl = np.array([(1, 2, 3), (4, 5, 6)], dtype=[('a', int), ('f0', float), ('f1', int)]) assert_equal(test, ctrl)
def test_fixed_width_names(self): "Test fix-width w/ names" data = " A B C\n 0 1 2.3\n 45 67 9." kwargs = dict(delimiter=(5, 5, 4), names=True, dtype=None) ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)], dtype=[('A', int), ('B', int), ('C', float)]) test = np.ndfromtxt(StringIO.StringIO(data), **kwargs) assert_equal(test, ctrl) # kwargs = dict(delimiter=5, names=True, dtype=None) ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)], dtype=[('A', int), ('B', int), ('C', float)]) test = np.ndfromtxt(StringIO.StringIO(data), **kwargs) assert_equal(test, ctrl)
def test_filling_values(self): "Test missing values" data = "1, 2, 3\n1, , 5\n0, 6, \n" kwargs = dict(delimiter=",", dtype=None, filling_values= -999) ctrl = np.array([[1, 2, 3], [1, -999, 5], [0, 6, -999]], dtype=int) test = np.ndfromtxt(StringIO.StringIO(data), **kwargs) assert_equal(test, ctrl)
def test_recfromtxt(self): # data = StringIO.StringIO('A,B\n0,1\n2,3') kwargs = dict(delimiter=",", missing_values="N/A", names=True) test = np.recfromtxt(data, **kwargs) control = np.array([(0, 1), (2, 3)], dtype=[('A', np.int), ('B', np.int)]) self.failUnless(isinstance(test, np.recarray)) assert_equal(test, control) # data = StringIO.StringIO('A,B\n0,1\n2,N/A') test = np.recfromtxt(data, dtype=None, usemask=True, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], dtype=[('A', np.int), ('B', np.int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.A, [0, 2])
def test_recfromcsv(self): # data = StringIO.StringIO('A,B\n0,1\n2,3') kwargs = dict(missing_values="N/A", names=True, case_sensitive=True) test = np.recfromcsv(data, dtype=None, **kwargs) control = np.array([(0, 1), (2, 3)], dtype=[('A', np.int), ('B', np.int)]) self.failUnless(isinstance(test, np.recarray)) assert_equal(test, control) # data = StringIO.StringIO('A,B\n0,1\n2,N/A') test = np.recfromcsv(data, dtype=None, usemask=True, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], dtype=[('A', np.int), ('B', np.int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.A, [0, 2]) # data = StringIO.StringIO('A,B\n0,1\n2,3') test = np.recfromcsv(data, missing_values='N/A',) control = np.array([(0, 1), (2, 3)], dtype=[('a', np.int), ('b', np.int)]) self.failUnless(isinstance(test, np.recarray)) assert_equal(test, control)
def test_gzip_load(): a = np.random.random((5, 5))
s = StringIO.StringIO() f = gzip.GzipFile(fileobj=s, mode="w")
np.save(f, a) f.close() s.seek(0)
f = gzip.GzipFile(fileobj=s, mode="r") assert_array_equal(np.load(f), a)
def test_gzip_loadtxt(): # Thanks to another windows brokeness, we can't use # NamedTemporaryFile: a file created from this function cannot be # reopened by another open call. So we first put the gzipped string # of the test reference array, write it to a securely opened file, # which is then read from by the loadtxt function s = StringIO.StringIO() g = gzip.GzipFile(fileobj=s, mode='w') g.write('1 2 3\n') g.close() s.seek(0)
f, name = mkstemp(suffix='.gz') try: os.write(f, s.read()) s.close() assert_array_equal(np.loadtxt(name), [1, 2, 3]) finally: os.close(f) os.unlink(name)
def test_gzip_loadtxt_from_string(): s = StringIO.StringIO() f = gzip.GzipFile(fileobj=s, mode="w") f.write('1 2 3\n') f.close() s.seek(0)
f = gzip.GzipFile(fileobj=s, mode="r") assert_array_equal(np.loadtxt(f), [1, 2, 3])
def test_npzfile_dict(): s = StringIO.StringIO() x = np.zeros((3, 3)) y = np.zeros((3, 3))
np.savez(s, x=x, y=y) s.seek(0)
z = np.load(s)
assert 'x' in z assert 'y' in z assert 'x' in z.keys() assert 'y' in z.keys()
for f, a in z.iteritems(): assert f in ['x', 'y'] assert_equal(a.shape, (3, 3))
assert len(z.items()) == 2
for f in z: assert f in ['x', 'y']
assert 'x' in list(z.iterkeys())
if __name__ == "__main__": run_module_suite()
|