Viewing file: test_FortunaAccumulator.py (8.27 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
# -*- coding: utf-8 -*- # # SelfTest/Random/Fortuna/test_FortunaAccumulator.py: Self-test for the FortunaAccumulator module # # Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net> # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ===================================================================
"""Self-tests for Crypto.Random.Fortuna.FortunaAccumulator"""
__revision__ = "$Id$"
from Crypto.Util.python_compat import *
import unittest from binascii import b2a_hex
class FortunaAccumulatorTests(unittest.TestCase): def setUp(self): global FortunaAccumulator from Crypto.Random.Fortuna import FortunaAccumulator
def test_FortunaPool(self): """FortunaAccumulator.FortunaPool""" pool = FortunaAccumulator.FortunaPool() self.assertEqual(0, pool.length) self.assertEqual("5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c9456", pool.hexdigest())
pool.append("abc")
self.assertEqual(3, pool.length) self.assertEqual("4f8b42c22dd3729b519ba6f68d2da7cc5b2d606d05daed5ad5128cc03e6c6358", pool.hexdigest())
pool.append("dbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq")
self.assertEqual(56, pool.length) self.assertEqual("0cffe17f68954dac3a84fb1458bd5ec99209449749b2b308b7cb55812f9563af", b2a_hex(pool.digest()))
pool.reset()
self.assertEqual(0, pool.length)
pool.append("a" * 10**6)
self.assertEqual(10**6, pool.length) self.assertEqual("80d1189477563e1b5206b2749f1afe4807e5705e8bd77887a60187a712156688", b2a_hex(pool.digest()))
def test_which_pools(self): """FortunaAccumulator.which_pools"""
# which_pools(0) should fail self.assertRaises(AssertionError, FortunaAccumulator.which_pools, 0)
self.assertEqual(FortunaAccumulator.which_pools(1), [0]) self.assertEqual(FortunaAccumulator.which_pools(2), [0, 1]) self.assertEqual(FortunaAccumulator.which_pools(3), [0]) self.assertEqual(FortunaAccumulator.which_pools(4), [0, 1, 2]) self.assertEqual(FortunaAccumulator.which_pools(5), [0]) self.assertEqual(FortunaAccumulator.which_pools(6), [0, 1]) self.assertEqual(FortunaAccumulator.which_pools(7), [0]) self.assertEqual(FortunaAccumulator.which_pools(8), [0, 1, 2, 3]) for i in range(1, 32): self.assertEqual(FortunaAccumulator.which_pools(2L**i-1), [0]) self.assertEqual(FortunaAccumulator.which_pools(2L**i), range(i+1)) self.assertEqual(FortunaAccumulator.which_pools(2L**i+1), [0]) self.assertEqual(FortunaAccumulator.which_pools(2L**31), range(32)) self.assertEqual(FortunaAccumulator.which_pools(2L**32), range(32)) self.assertEqual(FortunaAccumulator.which_pools(2L**33), range(32)) self.assertEqual(FortunaAccumulator.which_pools(2L**34), range(32)) self.assertEqual(FortunaAccumulator.which_pools(2L**35), range(32)) self.assertEqual(FortunaAccumulator.which_pools(2L**36), range(32)) self.assertEqual(FortunaAccumulator.which_pools(2L**64), range(32)) self.assertEqual(FortunaAccumulator.which_pools(2L**128), range(32))
def test_accumulator(self): """FortunaAccumulator.FortunaAccumulator""" fa = FortunaAccumulator.FortunaAccumulator()
# This should fail, because we haven't seeded the PRNG yet self.assertRaises(AssertionError, fa.random_data, 1)
# Spread some test data across the pools (source number 42) # This would be horribly insecure in a real system. for p in range(32): fa.add_random_event(42, p, "X" * 32) self.assertEqual(32+2, fa.pools[p].length)
# This should still fail, because we haven't seeded the PRNG with 64 bytes yet self.assertRaises(AssertionError, fa.random_data, 1)
# Add more data for p in range(32): fa.add_random_event(42, p, "X" * 32) self.assertEqual((32+2)*2, fa.pools[p].length)
# The underlying RandomGenerator should get seeded with Pool 0 # s = SHAd256(chr(42) + chr(32) + "X"*32 + chr(42) + chr(32) + "X"*32) # = SHA256(h'edd546f057b389155a31c32e3975e736c1dec030ddebb137014ecbfb32ed8c6f') # = h'aef42a5dcbddab67e8efa118e1b47fde5d697f89beb971b99e6e8e5e89fbf064' # The counter and the key before reseeding is: # C_0 = 0 # K_0 = "\x00" * 32 # The counter after reseeding is 1, and the new key after reseeding is # C_1 = 1 # K_1 = SHAd256(K_0 || s) # = SHA256(h'0eae3e401389fab86640327ac919ecfcb067359d95469e18995ca889abc119a6') # = h'aafe9d0409fbaaafeb0a1f2ef2014a20953349d3c1c6e6e3b962953bea6184dd' # The first block of random data, therefore, is # r_1 = AES-256(K_1, 1) # = AES-256(K_1, h'01000000000000000000000000000000') # = h'b7b86bd9a27d96d7bb4add1b6b10d157' # The second block of random data is # r_2 = AES-256(K_1, 2) # = AES-256(K_1, h'02000000000000000000000000000000') # = h'2350b1c61253db2f8da233be726dc15f' # The third and fourth blocks of random data (which become the new key) are # r_3 = AES-256(K_1, 3) # = AES-256(K_1, h'03000000000000000000000000000000') # = h'f23ad749f33066ff53d307914fbf5b21' # r_4 = AES-256(K_1, 4) # = AES-256(K_1, h'04000000000000000000000000000000') # = h'da9667c7e86ba247655c9490e9d94a7c' # K_2 = r_3 || r_4 # = h'f23ad749f33066ff53d307914fbf5b21da9667c7e86ba247655c9490e9d94a7c' # The final counter value is 5. self.assertEqual("aef42a5dcbddab67e8efa118e1b47fde5d697f89beb971b99e6e8e5e89fbf064", fa.pools[0].hexdigest()) self.assertEqual(None, fa.generator.key) self.assertEqual(0, fa.generator.counter.next_value())
result = fa.random_data(32)
self.assertEqual("b7b86bd9a27d96d7bb4add1b6b10d157" "2350b1c61253db2f8da233be726dc15f", b2a_hex(result)) self.assertEqual("f23ad749f33066ff53d307914fbf5b21da9667c7e86ba247655c9490e9d94a7c", b2a_hex(fa.generator.key)) self.assertEqual(5, fa.generator.counter.next_value())
def test_accumulator_pool_length(self): """FortunaAccumulator.FortunaAccumulator minimum pool length""" fa = FortunaAccumulator.FortunaAccumulator()
# This test case is hard-coded to assume that FortunaAccumulator.min_pool_size is 64. self.assertEqual(fa.min_pool_size, 64)
# The PRNG should not allow us to get random data from it yet self.assertRaises(AssertionError, fa.random_data, 1)
# Add 60 bytes, 4 at a time (2 header + 2 payload) to each of the 32 pools for i in range(15): for p in range(32): # Add the bytes to the pool fa.add_random_event(2, p, "XX")
# The PRNG should not allow us to get random data from it yet self.assertRaises(AssertionError, fa.random_data, 1)
# Add 4 more bytes to pool 0 fa.add_random_event(2, 0, "XX")
# We should now be able to get data from the accumulator fa.random_data(1)
def get_tests(config={}): from Crypto.SelfTest.st_common import list_test_cases return list_test_cases(FortunaAccumulatorTests)
if __name__ == '__main__': suite = lambda: unittest.TestSuite(get_tests()) unittest.main(defaultTest='suite')
# vim:set ts=4 sw=4 sts=4 expandtab:
|